
TCP Extensions for Space Communications

Robert C. Durst†, Gregory J. Miller‡, and Eric J. Travis*

†The MITRE Corporation *Gemini Industries
1820 Dolley Madison Boulevard

McLean, VA 22102

‡ MCI Telecommunications
2100 Reston Parkway

Reston, VA 20191
durst@mitre.org, gmiller@mci.net, travis@clark.net

Abstract
The space communication environment and mobile and wireless
communication environments show many similarities when ob-
served from the perspective of a transport protocol. Both types of
environments exhibit loss caused by data corruption and link
outage, in addition to congestion-related loss. The constraints
imposed by the two environments are also similar — power,
weight, and physical volume of equipment are scarce resources.
Finally, it is not uncommon for communication channel data
rates to be severely limited and highly asymmetric. We are
working on solutions to these types of problems for space com-
munication environments, and we believe that these solutions
may be applicable to the mobile and wireless community. As
part of our work, we have defined and implemented the Space
Communications Protocol Standards-Transport Protocol (SCPS-
TP), a set of extensions to TCP that address the problems that we
have identified. The results of our performance tests, both in the
laboratory and on actual satellites, indicate that the SCPS-TP
extensions yield significant improvements in throughput over
unmodified TCP on error-prone links. Additionally, the SCPS
modifications significantly improve performance over links with
highly asymmetric data rates.

1. Introduction

A standardized suite of space data communication protocol stan-
dards would be beneficial to both the military and civilian space
communications user communities. Use of common protocols for
data communications will increase interoperability and reduce
the cost of space systems, which are often designed and custom-
crafted for every mission or set of missions. In developing a
standard protocol suite for use in space communications, it is
natural to draw from the long-standing, successful, and robust
Internet protocols, TCP and IP. However, there are significant
differences between the space environment and that of typical
terrestrial communications. While TCP/IP has already been
deployed with favorable results in a plethora of diverse environ-
ments, from low data-rate satellite links to OC-12 fiber optic
lines, success in the range of space missions anticipated requires
certain extensions to address the constraints imposed by the hos-
tile space environment.

Working jointly with NASA and the U. S. DoD, we have de-
signed, specified, implemented, and are testing a set of protocols
for use in space data communications, known as Space Commu-
nications Protocol Standards (SCPS). We are developing four
SCPS protocols: a file transfer protocol, a transport protocol, a
security protocol, and a network protocol. In this paper, we dis-
cuss only the transport protocol, SCPS-TP, which is actually TCP
with a set of extensions and modifications to improve operation
in the space environment. We believe that many of these en-
hancements may also prove useful to the more general mobile
communications community.

The space environment poses a number of challenges in provid-
ing reliable, end-to-end data communication with a tolerable
level of service. Large propagation delays, limited bandwidth,
losses due to errors, asymmetric link capacities, and intermittent
connectivity all conspire to limit TCP’s performance severely. In
many cases, TCP can cope with a subset of these environmental
obstacles, although the performance achieved is far from optimal.
The set of TCP extensions that comprise SCPS-TP improves
performance in the space and mobile environment. Some of
these extensions are changes to the TCP specification, while
others are implementation details that do not affect interoper-
ability. We have adopted the RFC 1323 Timestamps and Win-
dow Scaling options [JBB92] and propose our own Selective
Negative Acknowledgment option. We also adopt the TCP Ve-
gas [BOP94] low-loss congestion control mechanisms; however,
we invoke congestion control only when we have evidence that
losses are a result of network congestion rather than bit errors.
Also, rate control optionally replaces the standard TCP ACK-
clocking for operation environments with highly asymmetric
bandwidth. Section 2 elaborates on the communications prob-
lems encountered in the space environment that motivated our
work. Section 3 describes the SCPS TCP extensions that address
these problems. Section 4 relates SCPS-TP to other proposed
schemes for improving TCP performance over wireless links.
Section 5 briefly describes our prototype SCPS-TP implementa-
tion. Section 6 presents performance test results of the SCPS-TP
protocol operating in both simulated and actual space environ-
ments. Finally, section 7 concludes with recommendations and
directions for future work.

2. Communications Problems

The space environment in general offers a number of impedi-
ments to reliable data communications. We use the term “space”
generically to refer to a wide range of environments in which one
communication endpoint is on Earth and the other is on a space-
craft. However, we draw parallels to the wireless and cellular
environments where applicable because in many ways, the prob-
lem domain for wireless communications is similar to that of the

———————————————
This work was supported by the U. S. Government under Contracts
DAAB0796-C-E601, F19628-94-C-0001, and NAS532607.

generic space environment. The spacecraft that we consider
range from Low Earth Orbiting (LEO) satellites to interplanetary
deep-space probes. In the remainder of this section, we describe
the shared traits of the mobile and space environments that affect
data communications along with a description of their specific
impact on the TCP protocol. This list includes a comprehensive
set of features, any single one of which may not be present in a
particular environment or operating scenario.

2.1 Error-Prone Links

In wireless communications in general, but especially in space
communications, bit-errors caused by noise are not uncommon.
To some degree, forward error correction can compensate for
such errors – trading bandwidth for effective data rate, but the
space link still is rarely as clean as those of modern terrestrial
networks. TCP is designed to handle packet loss by identifying
and retransmitting lost segments; however, TCP assumes the
source of all packet loss is network congestion. Consequently,
TCP invokes congestion control, reduces its congestion window,
and in turn, its transmission rate as a result of any packet loss
[Jac88]. As has been pointed out previously [Fox89, CI95,
BSAK95], this response is inappropriate when faced with loss
due to corruption rather than congestion, as is often the case on
space and other mobile communications links. TCP’s congestion
control algorithm works well in dealing with congestion-induced
loss, but only results in reduced throughput on uncongested,
noisy links without providing any benefits.

2.2 Asymmetric Channels

Communications channels between spacecraft and the ground are
frequently asymmetric in terms of both channel capacity and
error characteristics. Often the forward link bandwidth (from the
spacecraft to the ground) is substantially larger than the return
link bandwidth, with ratios of 1000:1 not uncommon. This
asymmetry is a result of various engineering tradeoffs (such as
power, mass, and volume), as well as the fact that for scientific
missions, most of the data originates at the satellite and flows to
the ground. The return link is generally used for commanding
the spacecraft, not bulk data transfer. While such high asymme-
tries are not as common in the wireless/cellular environments,
reducing the required acknowledgment channel bandwidth is still
a desirable goal since it reduces the energy emissions of a mobile
unit when it is only receiving data. Other scenarios involving
channel asymmetry, although non-mobile, are cable modem net-
works and direct broadcast satellite networks, which provide
high-bandwidth data pipes to homes and which use limited-
capacity telephone lines as return channels.

Bandwidth asymmetry can limit TCP’s throughput even when the
data are flowing on the larger channel and the smaller channel is
carrying only acknowledgments. A receiving TCP endpoint gen-
erally acknowledges every other segment, which dictates an ac-
knowledgment channel capacity that is proportional to the data
channel capacity and is a function of the segment size. With a
1024-byte segment size, TCP throughput is relatively unhindered
by a forward-link to return-link bandwidth ratio of less than 50:1;
however, throughput performance is limited by the acknowledg-
ment channel capacity at higher ratios.

2.3 Limited Link Capacity

Wireless communications channels tend to offer less available
bandwidth than wired networks. In the mobile and space arenas,
this problem is coupled with the constraint that power is limited

and bit-efficiency is important in terms of the cost of transmitting
as well as in terms of link capacity.

There is substantial bit-overhead associated with the TCP proto-
col, especially when using small segments to increase the prob-
ability of successfully transmitting a packet without incurring a
bit-error. This overhead, at least 20 bytes of TCP header per
packet, can consume a sizable share of a limited-bandwidth
channel.

2.4 Intermittent Connectivity

For satellites in non-geostationary orbits, connectivity on a given
communications link is usually intermittent. Contact may be
interrupted for a number of reasons, including ground station
handovers, changing network topology, antenna obscurations,
weather, and orbital dynamics. When a satellite transitions from
the visibility of one ground-station to another, the behavior is
similar to a cellular hand-off between two base stations, although
the handover time may be much longer.

In addition, complex, dynamic topologies (i.e., communications
among and through large satellite constellations) are likely to
exist in future space communication scenarios, as opposed to the
simpler space-to-ground model prevalent today. In a dynamically
changing network, when an intermediate system, either a fixed
base station or a satellite, hands off a mobile user to another
intermediate system, connectivity may be temporarily inter-
rupted. While highly dynamic network connectivity is rare in
current wireless and cellular networks, the possibility for mobile
base-stations exists in rapidly-deployable military or disaster-
relief networks, as well as ad-hoc networking of wireless de-
vices. Also, with increasing frequency there are incidences of
what can appear to be dynamic network topology in terrestrial
networks, such as the Internet, as a result of routing pathologies
[Pax96].

Even short-term link outages pose a problem for TCP, resulting
in poor throughput in the best case and aborted connections in
the worst [CI95]. In the absence of a steady flow of acknowl-
edgments, TCP will invoke congestion control and repeatedly
retransmit and back-off its retransmission timer. If connectivity
is restored before TCP exceeds its maximum retransmission
threshold, it will resume transmission where it left off. How-
ever, by the time the link is restored, the retransmission timer
may be backed-off so far that minutes elapse before TCP recog-
nizes it. If, on the other hand, TCP reaches its maximum re-
transmission threshold before connectivity is restored, the
connection is aborted.

Another potential effect of a changing network topology is a wide
fluctuation of measured round-trip delays due to increases or
decreases in path hop-count and propagation distances. TCP can
retransmit either too early or too late if its round trip time esti-
mate is sufficiently far from the current actual round trip time.
Premature retransmission timeouts result in unnecessary invoca-
tions of slow start, reducing throughput.

3. Proposed Solutions

The SCPS-TP protocol consists of standard TCP augmented by a
set of extensions and enhancements that consist of both imple-
mentation and specification changes. These modifications each
respond to requirements derived from the characteristics of the
space environment described above. Some of these TCP modifi-
cations have been proposed elsewhere in the literature; however,
they targeted environments different from the one we study here,

for instance, high-speed networks. We describe the list of TCP
enhancements that are incorporated into SCPS-TP below. The

enhancements are grouped according to the environment-induced
problem they address.

LRU
destination

cache

receiving
groundstation

TCP sources TCP destinations

corrupted link

ACKs carry
corruption-experienced

TCP option

corruption-
experienced

ICMP messages

Figure 1: Corruption Signaling.

We note that some of the SCPS-TP extensions affect interoper-
ability with regular TCP. Therefore, the use of the non-standard
SCPS-TP options and behaviors is negotiated on connection es-
tablishment via a “SCPS-TP capable” option. If the peer TCP
endpoint does not return the “SCPS-TP capable” option when it
is sent by the connection initiator on the SYN segment, SCPS-TP
will behave like regular TCP.

3.1 Coping with Different Sources of Loss

A key to optimizing TCP throughput performance is to identify
the source of packet loss and react appropriately. At least three
sources of loss exist in the space and mobile environments: net-
work congestion, corruption, and link outage. The appropriate
response to each of these types of loss is different, and SCPS-TP
implements a distinct response for each. SCPS-TP has two
mechanisms for determining the source of packet loss. Like
standard TCP, SCPS-TP makes a default assumption regarding
the source of loss in the absence of any explicit information.
TCP’s default assumption is that all loss is caused by congestion;
however, SCPS-TP’s default is a parameter that can be set by a
network manager or an application on a per route basis. In some
circumstances, where network bandwidth is carefully managed
on private links, congestion is unlikely and it is reasonable for
SCPS-TP to assume by default that any loss is due to errors.

The second mechanism for identifying the source of loss is ex-
plicit signaling. The destination host or other network elements
(routers or groundstations) may send explicit signals to the
sending TCP regarding the source of packet loss.

3.1.1 Congestion-Induced Loss

When congestion control is enabled, SCPS-TP uses the TCP
Vegas congestion control algorithms [BOP94, DLY95] to mini-
mize loss and facilitate the use of large windows. To achieve
optimal throughput performance, TCP depends on having the

receive window tuned to a value greater than the network band-
width-delay product, but small enough to prevent congesting the
network [VS94]. The TCP Vegas congestion control algorithms
eliminate the need to tune the receive window to serve as an
upper bound on the size of the congestion window. TCP Vegas’
congestion control bounds itself, self-tunes, and avoids network
congestion without overdriving the link to find the saturation
point, even when operating with large windows. Window sizes
larger than the bandwidth-delay product are desirable when er-
rors are present to decrease the probability of draining the pipe
during loss recovery. Also, on space links, where it is expensive
to recover from losses because of long delays and limited power,
it is especially desirable to find an optimal operating point with-
out repeatedly inducing loss the way standard TCP does. TCP
Vegas attempts to satisfy this requirement by increasing its con-
gestion window more slowly than standard TCP and by measur-
ing the achieved throughput gain after each increase to detect the
available capacity without incurring loss.

SCPS-TP uses the TCP Vegas variant of the Slow Start algorithm
[Jac88], which doubles the congestion window every other round-
trip time as opposed to every round-trip like standard TCP.
SCPS-TP modifies this algorithm by providing an additional
trigger for transitioning from the congestion window’s exponen-
tial-growth phase into the linear-growth congestion avoidance
phase. SCPS-TP enters congestion avoidance based on TCP
Vegas’ specified technique for sensing the point at which the
throughput increase tapers. In addition, SCPS-TP will enter
congestion avoidance once the congestion window size reaches
the bandwidth-delay product of the network. (Note that an
equivalent feature is documented by J. Hoe in [Hoe96].) The
network bandwidth-delay product for a connection is a supplied
parameter, as is the receive window size in TCP. TCP Vegas’
congestion avoidance mechanism continues to measure the
achieved throughput and adjust the congestion window size ac-
cordingly throughout the course of the connection.

TCP destinations

link-outage
ICMP messages

sent in response to
incoming traffic

temporary
link outage

TCP sources
(onboard)

enter persist
mode

sources send
occasional

probe packets

link outage
detected

Figure 2: Link Outage Signaling.

Congestion control is invoked in response to packet loss when-
ever congestion is set to be the default assumption regarding the
source of loss and whenever an Explicit Congestion Notification
(ECN) message is received. Any intermediate router or the des-
tination host can send an explicit congestion notification signal to
the sending SCPS-TP, either with a Source Quench ICMP mes-
sage or with an ECN field in a packet header, as described in
[Flo94]. The rules for generating ECNs are addressed in [Flo94]
as are proposed rules for responding to them. An explicit signal
regarding the source of loss will always override SCPS-TP’s
default assumption.

Note that the use of the Source Quench form of ECN has distinct
advantages when the congested router is on the data sender’s
side of a long-latency hop (such as a satellite link). The Source
Quench message reaches the data sender without incurring the
two long-latency hops required for acknowledgment-based sig-
nals from the destination host to be returned. This reduced delay
in congestion feedback helps the data source to respond to the
onset of congestion before the node is driven to significant loss.

Note also that TCP Vegas is robust against the possible loss of
an ECN message. If the assumed source of data loss is not con-
gestion, loss of an ECN can cause congestion to go unchecked.
TCP Vegas does not depend on loss as an indication of conges-
tion, so even when the default source of loss is corruption, TCP
Vegas still controls congestion, using whatever ECN messages
are received as additional information. Our use of TCP Vegas
presents a number of unresolved problems, as we summarize in
section 7. However, the fact that it does not depend on loss as a
signal of congestion is one of its promising features.

3.1.2 Corruption-Induced Loss

On space links, it is often the case that bit-errors are the primary
cause of packet loss, and that congestion is unlikely based on
careful scheduling of the link use. In these cases, SCPS-TP dis-
ables its default assumption that congestion is the source of loss
and does not invoke congestion control in response to packet
loss. To keep from over-running the link capacity, SCPS-TP

uses an open-loop, token bucket rate control mechanism [Par94]
that meters out transmissions at a specified rate. At each end-
point, the allowed rate for each link is a managed parameter that
is stored in the globally-accessible routing structure. On a host,
the available capacity for a particular link is shared among all
SCPS-TP connections using that link.

We identify four phases to corruption handling: identification of
onset, signaling, response, and identification of termination. The
identification of the onset of corruption on the downlink is per-
formed by the groundstation at the receiving end of the space
link. This receiver can request that the link layer pass up infor-
mation regarding the number of packets received that can be
demultiplexed but are in error (i.e., the CRC failed). The re-
ceiver maintains a weighted moving average of the number of
corrupted packets received and transitions into a link-corrupted
state when the average exceeds a threshold. The receiving net-
work layer maintains an aged LRU cache of destinations to
which it has forwarded packets from the “corruptible” link.
When the receiver transitions into the link-corrupted state, it
begins sending corruption-experienced ICMP messages to the
destinations contained in the cache (see Figure 1). The destina-
tions each inform their respective SCPS-TP sources about the
corrupted link via a TCP option on the acknowledgment seg-
ments. The destination SCPS-TP remains in the link-corrupted
state for approximately 2 x RTT unless the state information is
refreshed by an ICMP message.

While a corruption-experienced option is present on incoming
acknowledgment segments, the sending SCPS-TP does not in-
voke congestion control in response to packet loss. That is, the
sender does not reduce the congestion window and does not
back-off the retransmission timer. This response to packet loss,
which is detected in the usual manner from duplicate acknowl-
edgments and time-outs, continues until an acknowledgment is
received without a corruption-experienced option, at which time
the default response takes over.

The network layer on the receiving side of the corrupted link
continues to generate corruption-experienced ICMP messages-
based on arriving traffic while the moving average indicates that
corruption is present on the link.

3.1.3 Link Outage

A link outage is a transient loss of connectivity, resulting from a
satellite temporarily passing out of view of the groundstation, a
handover in a mobile network with dynamic topological changes,
or other short-term interruptions. In our discussion, we assume
that when a link is out in one direction, it is out in the other di-
rection as well. We consider the same four aspects in dealing
with link outages as we did for corruption. The mechanism for
identification of the onset of a link outage is link dependent. In
general, a link outage may be identified at the groundstation by
loss of carrier lock or the received signal strength falling below a
threshold. Once the groundstation (or spacecraft) detects the link
outage, it sends a link-outage ICMP message to any host on its
own side of the severed link from which it receives traffic (see
Figure 2). The ICMP message is triggered by incoming traffic
and contains the TCP header of the packet that caused the mes-
sage to be generated. The sending SCPS-TP’s response to a link
outage signal is to enter persist mode, sending periodic probe
packets. SCPS-TP does not repeatedly time-out, retransmit, and
back-off the retransmission timer; instead it suspends its timers
and ceases transmitting, except for the occasional probe packets.
SCPS-TP exits persist state when it receives a link-restored
ICMP message from the groundstation, or when one of the
probes gets through and is acknowledged. When the link is re-
stored, the sending SCPS-TP can infer where in the data stream
to resume transmission from the sequence number in the TCP
header carried in the original link-outage ICMP message.

3.2 Coping with Asymmetric Channels

TCP relies on a stream of acknowledgments to clock out data
continuously from the sender. Communication links between
spacecraft and the ground are typically configured with a high-
rate channel in one direction and a much lower rate channel in
the opposite direction: these are typically used for telemetry and
commands respectively. If a satellite is reliably transmitting data
over the telemetry channel, the volume of TCP acknowledgment
traffic generated can easily overrun the reverse channel carrying
the acknowledgments. To overcome this problem, SCPS-TP
removes the requirement that TCP acknowledge at least every
other segment received [Bra89]. SCPS-TP also relaxes the re-
quirement that TCP immediately acknowledge every segment
received when an out-of-sequence queue exists [Bra89]. Instead,
the SCPS-TP data-receiver delays acknowledgments for a config-
urable period of time that is related to its estimate of the RTT.1

We are currently experimenting with acknowledgment frequen-
cies ranging from once per RTT up to 8 per RTT, but have not
determined an optimal value yet.

Such drastically delayed acknowledgments impact TCP in sev-
eral ways. Depending on the particular acknowledgment fre-
quency, retransmission timer value, and window sizes being
used, the Fast Retransmit algorithm, through which the sender
detects loss by counting duplicate acknowledgment segments
[Ste94, Ste96], may essentially be disabled. Also, in the absence
of a regular acknowledgment-driven clock, TCP must use another

1 The SCPS-TP data-receiver can accurately estimate the RTT if the TCP
Timestamps option is being used on the connection. Otherwise, calculating
the RTT is more difficult. We are exploring mechanisms for estimating the
RTT in this case.

mechanism to meter out data smoothly at the sender. The open-
loop rate control mechanism described in section 3.1.2 serves
this purpose by regulating the transmission of packets to a speci-
fied rate and by limiting the burst sizes. Finally, there is a
problem with using a fixed ACK frequency as SCPS-TP does
rather than an ACK frequency driven by the data transmission
rate like TCP’s. When the link is shared by multiple connections
and the ACK channel becomes congested, TCP’s congestion
control will reduce the data transmission rate, and consequently,
the acknowledgment rate. In contrast, SCPS-TP will continue to
ACK at a fixed rate on a congested ACK channel, even if con-
gestion control reduces the data transmission rate. We are cur-
rently studying solutions to address this problem, one of which
involves triggering acknowledgments by the receipt of at least
some threshold amount of data. In such a case, the delayed ACK
timer would still ensure that ACKs are emitted regularly on an
interactive data flow that does not send large enough blocks of
data to trigger an ACK.

A second technique that aids throughput performance on asym-
metric channels is SCPS-TP header compression, which is de-
scribed below. Header compression can significantly reduce the
overhead on the acknowledgment channel and allow higher ACK
rates.

3.3 Coping with Limited Link Capacity

SCPS-TP uses two mechanisms to improve performance in
bandwidth-constrained environments: SCPS-TP Header Com-
pression and the SCPS-TP Selective Negative Acknowledgment
(SNACK) option. These two mechanisms are discussed in the
following subsections.

3.3.1 SCPS-TP Header Compression

The primary approach SCPS-TP takes to dealing with limited
bandwidth is to use end-to-end TCP header compression. SCPS-
TP header compression differs from the TCP/IP header compres-
sion scheme that is specified in RFC 1144 [Jac90], which was
designed for use on low-speed serial links. RFC 1144 TCP/IP
header compression is performed on a hop-by-hop basis at the
link layer, where connection state tables are maintained for in-
bound and outbound TCP/IP connections. The state for each
connection consists of the last uncompressed TCP and IP headers
sent (outbound) or received (inbound) on that connection. The
compressor initializes by allocating a connection identifier for the
connection and saving the first TCP and IP headers sent. Subse-
quent headers are constructed by sending only the changes from
the previous headers. For example, the sequence number, ac-
knowledgment number, urgent pointer, and window field are sent
as changes to the previous values. At the receiving side, uncom-
pressed headers are created by applying the changes contained in
the newly received compressed header to the saved header.
Copies of the new headers are then saved in the connection state
table as the new compression state, and the uncompressed head-
ers are forwarded to the destination with the data. If a segment
is lost or corrupted, an invalid uncompressed header will be cre-
ated when the incorrect changes are applied to the stored com-
pression state. This invalid header will be detected when the
TCP checksum fails, and the packet will then be discarded. In
such a case when the compression state becomes invalid, all
packets arriving after the lost or corrupted packet will be decom-
pressed improperly, causing them to be discarded. Compression
state is resynchronized when the TCP source eventually retrans-
mits the original lost or corrupted packet. Retransmissions are
sent uncompressed to facilitate resynchronization.

RFC 1144 TCP/IP header compression performs well on serial
links with short delays and low error rates, such as telephone
lines, but it is inadequate for the space or mobile environment for
two reasons. Because it is performed at the link layer, the com-
pression algorithm must be restarted whenever connectivity
changes, causing all packets in flight to be lost. RFC 1144
header compression is also sensitive to corruption, loss, and
misordering since it requires the compressor and decompressor to
resynchronize whenever a packet is lost or arrives out of order.
Synchronization is expensive, especially when operating with
large windows or over long delays, as it causes go-back-n be-
havior. The go-back-n behavior is a result of the delta encoding
that the compressor uses, which dictates that the decompression
of a particular packet depends upon the successful decompres-
sion of the preceding packet. When a single packet is lost, cor-
rupted, or misordered, none of the packets that follow it can be
decompressed. These invalid packets, up to one bandwidth-delay
product’s worth, cannot be buffered by the receiver, so they are
lost.

We have developed a loss-tolerant TCP header compression
scheme that operates end-to-end, at the transport layer, and can
tolerate loss and changing connectivity. SCPS-TP header com-
pression reduces the size of TCP headers by approximately 50%,
which is a substantial savings for pure acknowledgment seg-
ments. It works by summarizing information that is static for the
duration of the connection and by omitting information that is not
relevant to the segment being sent. For instance, it assigns a
connection identifier to replace the port numbers and it omits
fields such as the urgent field if the URG flag is not set. The
actual compressed SCPS-TP header is variable in length, but
always contains a connection identifier, a bit-field indicating
what optional fields are present and what flags are set, and a
checksum. Unlike RFC 1144 TCP/IP header compression,
SCPS-TP header compression does not operate at the link layer,
it does not use delta encoding, and it compresses only the TCP
header, not the IP header. By operating end-to-end, SCPS-TP
header compression avoids the problems caused by changing
connectivity, since the endpoints, where the compressor and de-
compressor reside, never change. SCPS-TP header compression
addresses the problems introduced by misordering and packet
loss by ensuring that each packet is decompressible independ-
ently of preceding packets. This way, TCP’s usual resequencing
mechanisms can be used to avoid go-back-n behavior in the event
of loss.

The use of SCPS-TP header compression is negotiated using an
option on the uncompressed SYN and SYN/ACK segments that
open a connection. Note that when SCPS-TP header compres-
sion is being used, a different protocol number than TCP’s (105)
is used in the IP header to identify the encapsulated transport
protocol.

3.3.2 The SCPS-TP SNACK Option

A second extension that improves both utilization of limited
bandwidth and loss recovery is the SCPS-TP Selective Negative
Acknowledgment (SNACK) option. This option allows the re-
ceiver to inform the SCPS-TP sender about one or more holes in
the receiver’s out-of-sequence queue. Without a selective ac-
knowledgment, TCP can use the ACK number to identify at most
a single hole in the receiver’s buffer. Using its simple cumula-
tive acknowledgment and the Fast Retransmit algorithm [Ste94],
TCP can recover efficiently from a single loss per window.
However, because new data must be received for the receiver to
advance the ACK number, TCP requires a minimum of one RTT

to signal each additional hole in the out-of-sequence queue. The
SNACK option, which is carried on an acknowledgment seg-
ment, identifies multiple holes in the sequence space buffered by
the receiver. By providing more information about lost segments
more quickly, the SNACK option can hasten recovery and pre-
vent the sender from becoming window-limited, thus allowing
the pipe to drain while waiting to learn about lost segments. The
ability to transmit continuously in the presence of packet loss is
especially important when loss is caused by corruption rather
than congestion. In such a case, when it has been deemed that it
is appropriate to disable congestion control as the response to
loss, SNACK is of particular benefit in keeping the pipe full and
allowing transmission to continue at full throttle while recover-
ing from losses.

The SCPS-TP SNACK option draws from both the TCP Selective
Acknowledgment (SACK) option [MMFR96] and the TCP
Negative Acknowledgment (NAK) option [Fox89], which was
proposed in 1989, but never adopted as a standard. Both of these
options address the problem described above, in which through-
put suffers when TCP experiences more than one segment loss in
a window. We briefly describe these options in the following
paragraphs, explain why they are unsuitable in the space/mobile
environment, and finally describe the SCPS-TP SNACK option.

The SACK option has recently been approved as a Proposed
Standard within the IETF as RFC 2018, and is expected to enjoy
wide deployment. The new SACK option is a refinement of the
one that was originally proposed in RFC 1072 [JB88], but later
deferred pending further study. The RFC 1072 SACK option
contains advisory information regarding non-contiguous blocks of
data that have been received and queued by the receiver. The
SACK option does not change the interpretation of the acknowl-
edgment number in the basic TCP header. The intention is that
the data-sender will optimize retransmissions based on the addi-
tional information provided by the SACK option. The option
itself consists of a variable-length list of pairs of 16-bit integers.
Each pair defines a block of sequence space that corresponds to
data that is being buffered by the receiver. A pair consists of a
relative origin and a block size for each isolated, contiguous
block of received data. The relative origin specifies the first
sequence number in a block, as an offset from the acknowledg-
ment number in the TCP header, and the block size specifies the
size in bytes of the block of data. The RFC 1072 SACK option
was never standardized primarily because it is incompatible with
the Window Scaling option [JBB92]. Using its 16-bit relative
origin field, it is incapable of referencing more than the first 64
kbytes of the potentially large scaled window without losing
precision by resorting to a solution that scales the fields in the
SACK option.

The RFC 2018 SACK corrects this shortcoming of the RFC 1072
SACK by using full 32-bit sequence numbers to identify the start
and end of each SACK block, rather than an offset and a size.
Furthermore, the new SACK specification clarifies the sender
and receiver behavior with regard to the SACK option, which
had been incompletely specified in RFC 1072. The RFC 2018
specification dictates that when the data-receiver decides to send
a SACK option, the first SACK block in the list must identify the
most-recently-received block of data. The remaining blocks in
the list, whose length is dictated by the available space in the
TCP header, are SACK blocks that may have already been
SACKed. This means that, as duplicate acknowledgment seg-
ments carrying the SACK option are sent in response to incoming
data segments, each SACK option first specifies the block of data
containing the segment that triggered that particular acknowl-

edgment. This way, every received block will be SACKed at
least three times, depending on the space available for options,
and that the data-sender always gets the most up-to-date infor-
mation about the state of the receiver’s queue. The data-sender,
upon receiving a SACK option, simply marks the specified seg-
ments as SACKed. Later, if a retransmission is deemed neces-
sary through receipt of duplicate acknowledgments, any segments
tagged as SACKed are skipped over during retransmission. If the
retransmit timer expires, all SACKed flags are reset in case the
receiver has reneged on previously sent SACKs. TCP’s loss
detection and congestion control algorithms remain unchanged by
the use of SACK.

The use of the SACK option poses two difficulties in the space
and mobile environment. The SACK option was motivated
through work in the high-speed networking arena, and as a re-
sult, it is not particularly bit-efficient. In a bandwidth-
constrained environment, the use of two 32-bit sequence num-
bers to specify a single SACK block is costly. In addition, be-
cause a TCP header is limited to carrying at most 40 bytes of
options, the maximum number of SACK blocks that can be sig-
naled in a single SACK option is three when the TCP Times-
tamps option [JBB92] is also being used. Such a limitation on
the number of SACK blocks per acknowledgment segment may
be too restrictive in the space environment. Especially in deep
space, window sizes will be large, allowing a large number of
segment losses per window. If acknowledgments are sent infre-
quently because of limited acknowledgment channel bandwidth,
it may difficult to signal all of the isolated blocks in the re-
ceiver’s queue with the ability to specify only three at a time.
The second problem with using SACK in an environment with an
asymmetric channel is that it relies on the Fast Retransmit algo-
rithm to detect lost segments and trigger retransmission. When
the acknowledgment channel bandwidth is highly constrained,
SCPS-TP’s acknowledgment frequency may be tuned so that the
data-sender will never receive enough duplicate acknowledg-
ments to trigger a Fast Retransmit. In such a case, SACK will
provide no benefit since the SACK information is cleared when
the retransmit timer expires, which could be the only means for
detecting loss.

The other TCP option that has been proposed to help improve
loss recovery is the NAK option. Unlike SACK, this option was
motivated through work in the satellite environment, so it is
more bit-efficient than SACK. The NAK is a negative acknowl-
edgment, rather than a positive acknowledgment. It allows the
data-receiver to report a block of data that was not received and
potentially needs to be retransmitted. Like SACK, the NAK
option does not alter the meaning of the regular acknowledgment
in the TCP header, but simply provides additional information
that can be ignored without affecting TCP’s current behavior.
The NAK option contains the sequence number of the first byte
being NAKed and the number of consecutive maximum-segment-
sized blocks being NAKed. When the data-sending TCP receives
a NAK, it may elect to retransmit the NAKed segments immedi-
ately or it may ignore the NAK information.

The main problem with the NAK option for use in long-delay
environments is that it has the ability to signal only a single hole
in the sequence space buffered by the receiver. As mentioned
above, a more powerful mechanism, capable of specifying multi-
ple holes is desirable in the noisy, long-delay environment to
provide the sender with more information about the state of the
receiver’s potentially large out-of-sequence queue. It is espe-
cially important that the acknowledgment mechanism convey as
much information as possible in the case when the acknowledg-

ment frequency is significantly reduced, since there are fewer
opportunities to send acknowledgment information.

The SCPS-TP SNACK option borrows ideas from both SACK
and NAK. The SNACK is a negative acknowledgment, like
NAK, but it is capable of specifying a large number of holes in a
bit-efficient manner. It is a variable-length option that consists
of 5 fields: the kind and length fields required of all TCP options,
followed by the mandatory offset and length fields (each 16 bits
long) and an optional variable-length bit-vector. Offset specifies
the displacement from the ACK number carried in the regular
TCP header to the starting location of the first hole that is being
signaled by this particular SNACK option. The length field
specifies the size of this hole. Note that this hole is not neces-
sarily the first hole in the receiver's overall out-of-sequence
queue. Both the offset and length values are expressed in
Maximum Segment Size (MSS) units. The bit-vector then sig-
nals zero or more additional holes, also expressed in terms of
MSS-sized blocks. The bit-vector maps the sequence space of
the receiver's buffer beginning one byte beyond the end of the
block specified by offset. Each "0" in the bit-vector signifies that
one or more bytes are missing in the corresponding MSS-size
block of the receiver's resequencing queue. The length of the bit-
vector, which may vary at the SNACK-sender's discretion, is
determined from the option length.

While an out-of-sequence queue exists, the data-receiver scans
its receive buffer, forming SNACK options and sending them on
outgoing ACK segments. By setting the offset field to zero, the
data-receiver can NAK a block beginning at the ACK number in
the TCP header. Alternatively, by specifying a non-zero offset
value, the SNACK option can begin by addressing any arbitrary
portion of the sequence space. The latter capability is especially
useful when the out-of-sequence queue is large, even in terms of
MSS units, and a single SNACK option is unable to reference
the entire sequence space because of the limit on the size of the
TCP header. In such a case, multiple SNACK options can be
sent with each continuing to specify holes in the receive buffer
where the last left off.

Upon receipt of a SNACK option, the data-sender immediately
retransmits all segments necessary to fill the signaled holes. The
SNACK is a request for retransmission. This behavior is similar
to that dictated by the RFC-1106 NAK option, in contrast to the
SACK recommendation. Because acknowledgments, and hence
SNACK options, are sent infrequently, there is limited danger of
unnecessarily retransmitting a delayed or misordered segment.
Note that because the SNACK option triggers a retransmission,
there is no reliance on the Fast Retransmit algorithm to detect
loss. This independence from the Fast Retransmit algorithm is
important since duplicate ACKs may never be received when
operating over asymmetric channels with SCPS-TP’s acknowl-
edgment frequency set low. In such a case, the retransmission
timer would be the only mechanism available for detecting loss.

3.4 Other Techniques for Coping with Errors

SCPS-TP employs two TCP options specified in RFC 1323
[JBB92] that improve performance in the long-delay, noisy envi-
ronment. The TCP Timestamps option helps TCP make accurate
RTT estimates in the face of loss, when it can be difficult to time
the round-trip of particular segments that may be lost and subse-
quently retransmitted. SCPS-TP also uses the TCP Window
Scaling option, which enables window sizes larger than 64
kbytes to be used. In an environment in which loss is caused by
corruption, operating with a window that is larger than the

bandwidth-delay product is beneficial so that the source is able to
continue transmitting new data while recovering from losses.
When losses are corruption-induced, SCPS-TP can maintain its
transmission rate in the event of loss. A large window will allow
the sender to continuously send new data while retransmitting
lost segments, even as the left edge of the window does not ad-
vance for periods of time.

4. How SCPS-TP Relates To Other Approaches

In the research community, there is substantial work in progress
to improve the performance of TCP over wireless links. Good,
critical discussion of several approaches that have recently been
proposed can be found in [BSAK95] and [BPSK96]. Two of the
promising solutions are the Snoop protocol [BSAK95] and Indi-
rect-TCP (I-TCP) [BB94]. It appears that the use of SCPS-TP
could compliment either of these approaches; however, more
study is needed to understand all of the potential protocol inter-
actions.

The Snoop protocol provides performance improvements by in-
troducing an agent at the groundstation that monitors passing
TCP traffic and caches packets until they are acknowledged. The
agent is able to detect lost segments through the receipt of dupli-
cate ACKs or by a local time-out. When the agent detects a
packet loss on the wireless link, it retransmits the lost packet and
intercepts the duplicate ACKs to prevent the TCP sender from
invoking congestion control. Hence, losses on the wireless link
are transparent to the TCP sender and are handled independently
of congestion-related loss elsewhere in the network. SCPS-TP is
compatible with this approach; however, the Snoop agent may
have difficulty detecting loss based on duplicate ACKs if SCPS-
TP’s acknowledgment frequency is configured to be low. Addi-
tionally, approaches that operate at the link layer, like Snoop,
cannot work at all if end-to-end encryption mechanisms that ob-
scure the transport headers are in use.

I-TCP advocates splitting the TCP connection between the two
TCP endpoints into separate connections at the groundstation or
base station. The groundstation then communicates with the
fixed host on the wired network using regular TCP; however, a
different protocol, tuned for the wireless environment, can be
used to improve performance on the final wireless link to the
mobile host. In this way, congestion control on the wired net-
work is separated from error recovery on the wireless link.
Again, SCPS-TP is compatible with this approach, and in fact,
should be well-suited for use as the protocol on the single-hop
wireless link. Additionally, as multi-hop wireless networks
evolve, SCPS-TP can address the need for a transport protocol
suited to this environment.

5. Prototype Implementation

We have developed a prototype implementation of SCPS-TP that
runs as a user process on a Unix workstation. The transport
protocol, the application, and a thread scheduler are all compiled
and linked together into a single executable program. The proto-
col engine and the application program are each implemented as
threads and the thread scheduler provides context-switching be-
tween the two. The SCPS-TP segments are encapsulated in raw
IP packets and are sent over an Ethernet on our testbed. We
have developed two simple applications for performance testing
and debugging, a data-transmitting SCPS-TP client and a data-
receiving server.

We also have developed a program, known as Spanner, that runs
on a third workstation on the Ethernet testbed and simulates a

satellite channel in the laboratory. The client and server work-
stations are configured to communicate with each other using the
Spanner machine as an intermediate router. Spanner accepts
packets from the Ethernet and forwards them to their destination
at the configured bit-rate after first applying the user-specified
delays and bit-errors. Spanner buffers packets to simulate both
propagation delay and delay caused by the specified data rate.
Spanner randomly corrupts packets to simulate a particular bit-
error rate by choosing packets according to a Bernoulli process
and simply not forwarding them to the destination. Spanner also
is capable of sending link-outage ICMP messages and mimicking
a link outage by dropping all packets for a user-specified period
of time.

Spanner is also capable of emulating a typical Drop-Tail router
that has finite buffers. Spanner’s buffer capacity can be config-
ured separately in each direction; all packets arriving while the
buffer is full are discarded. In future, we plan to give Spanner
the ability to detect incipient congestion using Random Early
Detection (RED) [FJ93] and to send Explicit Congestion Notifi-
cation signals.

6. Experimental Results

We have conducted a wide range of experiments in the laboratory
to characterize the performance of the SCPS-TP prototype. We
have also conducted two experiments using live satellites: a bent-
pipe test over a U. S. DoD satellite link and an on-board test, in
which we hosted the SCPS-TP prototype aboard a U. K. space-
craft. In this section, we present results obtained from both the
live experiments and the laboratory tests. We show a selected
subset of our live test results that demonstrate the performance of
SCPS-TP in a variety of challenging communications environ-
ments. In the laboratory tests, we compare the performance of
SCPS-TP with that of regular TCP.

We present laboratory test results in addition to live experiment
results for several reasons. The laboratory provides an experi-
mentation environment for conducting performance measure-
ments under controlled conditions and under scenarios that were
not available in our live tests. For example, the live experiments
offered only an 8:1 bandwidth asymmetry, so we used the testbed
to study performance under greater bandwidth disparities. Also,
it can be difficult to control or measure the bit-error rate of an
actual satellite channel, while in the lab we have full control over
the channel delays and errors using Spanner. Finally, we did not
have the ability to run standard TCP for comparison in either of
the live tests, so we obtained all of our TCP results on the test-
bed.2

6.1 Comparison of SCPS-TP and Regular TCP

We conducted a number of tests in the laboratory to compare the
performance of SCPS-TP with that of regular TCP in various
simulated space-link environments. In this section, we describe
the results of two types of tests: asymmetry tests and corruption
tests. We designed each test to provide a fair comparison be-
tween the two protocols by choosing network characteristics and
protocol configurations that isolate the one environmental feature
on which each test focuses (i.e., asymmetry or corruption). In
each test, we configured our SCPS-TP implementation appropri-
ately for the environment being addressed and we provisioned

2 We note that by later duplicating the live tests on the testbed, we validated
the laboratory results that were obtained using Spanner. The close agree-
ment between the lab results and the results from the bent-pipe and on-board
tests gives us confidence in the validity of our testbed results.

regular TCP with properly-sized socket buffers. As we describe
each test, we list the values of the relevant SCPS-TP configura-
tion parameters.

In all tests, we compare the performance of SCPS-TP to that of
regular TCP. The implementation of TCP that we use on the
testbed is the one incorporated into the SunOS 4.1.3 Unix kernel.
This is one of the most widely used TCP implementations and is
derived from 4.2BSD and 4.3BSD and [Ste94]. SunOS’s TCP
implementation does not include the RFC 1323 extensions, and
based on a SunOS socket interface limitation, it has a maximum
window size of 51,968 bytes. Consequently, we chose to perform
all the tests on a network with a bandwidth-delay product well
below SunOS’s 51 kbyte window size limit to ensure that TCP’s
throughput did not suffer because the sender was window lim-
ited. In each test, we tune TCP’s receive widow size to be ap-
proximately 10% larger than the network bandwidth-delay
product. We also disable the use of the TCP Timestamps option
and SCPS-TP Header Compression in our comparison tests so
that both SCPS-TP and TCP have roughly the same header over-
head (except for the SNACK option).

To use spanner as a router, we configure the test hosts to believe
that they are on different IP networks. Many older TCP imple-
mentations, including SunOS’s, choose to use 512-byte TCP
segments when communicating with a destination whose IP ad-
dress is non-local. As a result, we use segments that carry 512
bytes of user data in all tests, for both TCP and for SCPS-TP. In
each run, we transmit 5 million bytes of user data from the client
to the server, and we measure the user-data throughput. For
regular TCP, we conduct the tests using the popular TTCP
benchmarking tool. In conducting the SCPS-TP tests, we use a
version of TTCP that we have ported to run over our SCPS-TP
protocol prototype. We replicate each run 5 times and average
the results.

We configure Spanner to apply the desired data-rates, delays, and
bit-errors for each test. We also enable Spanner’s Drop-Tail
behavior and provision Spanner with one bandwidth-delay prod-
uct’s worth of buffers (lower-bounded by 6 packets) in each di-
rection for all tests.

6.1.1 Asymmetry Tests

In the asymmetry tests, we demonstrate the throughput perform-
ance of SCPS-TP and regular TCP in environments with a range
of bandwidth asymmetries. Using Spanner, we configured a
simulated space link on our Ethernet testbed with a 50 ms one-
way propagation delay and a 1.5 Mb/s data-rate in the forward
direction. We systematically varied the data-rate of the return
channel from 1.5 Mb/s to 1.5 kb/s to produce data-channel
bandwidth to ACK-channel bandwidth ratios ranging from 1:1 to
1000:1. Note that the bandwidth-delay product of the network in
all cases is well below the 51 kbyte window size limit of
SunOS’s TCP.

We configured SCPS-TP as described in Table 1, and varied the
ACK frequency to be approximately 50% of the available ACK-
channel capacity for each test.

Figure 3 shows the throughput performance of both SCPS-TP
and TCP over a range of data-channel to ACK-channel band-
width ratios. We see that on a symmetric channel, both protocols
obtain nearly the same throughput. However, as the ACK-
channel capacity is reduced, TCP’s throughput drops rapidly
while SCPS-TP’s throughput degrades much more slowly. The
decay in TCP’s throughput appears to be exponential, with the
throughput obtained at a 200:1 ratio only about 30% of the
throughput on a symmetric channel. In contrast, SCSP-TP’s drop
in throughput is nearly linear; SCPS-TP’s throughput doesn’t
decrease by 70% until the asymmetry nears 1000:1.

The disappointing fact that SCPS-TP’s throughput is worse at a
400:1 ratio than at a 500:1 ratio can be explained as an interac-
tion between the TCP Vegas congestion control mechanism and
the acknowledgment strategy. SCPS-TP’s reduced acknowledg-
ment frequency needs substantial tuning for each scenario, and
when it is not properly tuned, the variation in the ACK delay can
be interpreted by TCP Vegas congestion control as network con-
gestion. In this particular experiment, we did not have the ACK
frequency tuned properly in the 400:1 case and throughout suf-
fered as a result. Refining the ACK strategy and limiting its
impact on the congestion control mechanisms are areas that we
are currently investigating. We note that TCP does not suffer
from this problem. The throughput performance of TCP de-
grades smoothly as the degree of asymmetry increases.

Figure 3: Asymmetric Channel: SCPS-TP vs. TCP.

Table 1: SCPS-TP Profile for Asymmetry Tests.

Configuration Parameter Test Setting
Send buffer size 300 kbytes
Receive buffer size 300 kbytes
Congestion control On
ACK frequency Varies: 50% of avail.
Rate control 1.5 Mb/s
SNACK option On, No bit-vector
Window Scaling option On
TCP Timestamps option Off
SCPS-TP Header Compression Off

6.1.2 Corruption Tests

In the corruption tests, we demonstrate the throughput perform-
ance of SCPS-TP and regular TCP at a range of bit-error rates.
Here, we use Spanner to emulate a symmetric 1.5 Mb/s space
link with a set of bit-error rates ranging from 10-8 to 10-5. We
conducted two independent sets of tests using different one-way
propagation delays: 50 ms and 100 ms.

We set SCPS-TP’s configuration parameters as listed in Table 2.
In these tests, we disabled congestion control for SCPS-TP. This
setting is intended to correspond to an implementation whose
default assumption regarding the source of loss is corruption, or
an implementation that has received an explicit corruption sig-
nal. We use a receive window that is several times larger than
the network bandwidth-delay product to permit the transmission
of new data while recovering from loss. The use of the token-
bucket rate control mechanism mentioned earlier allows SCPS-
TP to run with large windows without overrunning network ca-
pacity.

Figure 4: Corrupted Link: SCPS-TP vs. TCP.

Figure 4 shows the throughput performance of SCPS-TP and
TCP as a function of bit-error rate at two different delays. We see
that SCPS-TP’s throughput performance is virtually unaffected
by packet loss caused by bit-errors, while TCP’s throughput suf-
fers severely as the error-rate increases. In general, SCSP-TP is
able to maintain its transmission rate while recovering from
losses. Only at bit-error rates worse than 10-6 does throughput
begin to taper. In the 50 ms delay case, the throughput for
SCPS-TP at 10-5 is only 7% lower than at 10-8. Meanwhile, TCP
throughput is sensitive to bit-errors because TCP invokes a con-
gestion control response to all loss. In addition, TCP learns
about segment loss slowly, at most one per round-trip, because it
lacks a selective acknowledgment mechanism.

Figure 5: Sequence Numbers vs. Time at 10-5 BER.

Figures 5 and 6 contrast the way that SCPS-TP and TCP react to
corruption-induced loss. These figures show transmitted se-
quence numbers as a function of time for both protocols.

Figure 6 is a detailed view of the beginning of the trace shown in
Figure 5. The figures show how TCP repeatedly pauses follow-
ing losses (due to retransmission timeout) and slowly increases
its transmission rate until the next loss causes a retransmission
timeout. Meanwhile, SCPS-TP transmits at a constant rate,
while retransmitting lost segments.

Figure 6: Sequence Numbers vs. Time at 10-5 BER (detailed
view).

6.2 Bent-Pipe SCPS-TP Experiment

We present a single, summarized set of results from our bent-
pipe experiment with SCPS-TP running over a real satellite link.
We focus on the throughput performance of a single configura-
tion of the SCPS-TP prototype when faced with a range of bit-
error rates. The SCPS-TP prototype was hosted on a pair of Sun
workstations (an IPC for the initiator and a Sparc 2 for the re-
sponder) that were configured to communicate with each other
through their serial ports over the satellite channel. The satellite
channel bandwidth was 256 kb/s in the forward direction and 32
kb/s in the reverse, yielding an 8:1 data-channel to ACK-channel

Table 2: SCPS-TP Profile for Corruption Tests.

Configuration Parameter Test Setting
Send buffer size 300 kbytes
Receive buffer size 300 kbytes
Congestion control Off
ACK frequency 1 ACK/69 ms
Rate control 1.425 Mb/s
SNACK option On, No bit-vector
Window Scaling option On
TCP Timestamps option Off
SCPS-TP Header Compression Off

ratio. The round-trip propagation delay was 500 ms, which is
typical of a geosynchronous satellite hop. The SCPS-TP proto-
type was configured as shown in Table 3. Because the tests were
conducted on a private point-to-point satellite link, it was rea-
sonable to disable congestion control and set corruption to be
SCPS-TP’s default assumption about the source of loss.

In each test, the SCPS-TP initiator transmitted 6 Mbytes of data
over a single SCPS-TP connection to the responder. We con-
ducted tests with a range of packet sizes and measured the user-
data throughput in each case. The throughput results of two
selected cases are shown in Figure 7. We plot the throughput
versus the bit-error rate for 1000-byte and 125-byte segments.
Along with the live bent-pipe test data, shown as individual
points, the graph depicts the laboratory data for this scenario.
We obtained the lab data by duplicating the bent-pipe test condi-
tions on our Ethernet testbed using Spanner to provide the ap-
propriate delay, data-rate, and bit-error rates. The lab data sets
are shown as two lines, one for each packet size, that represent
the mean of five runs at each of the four bit-error rates: 10-8, 10-7,
10-6, and 10-5.

Figure 7: Bent-Pipe Test: Throughput vs. BER.

We make three observations about Figure 7. First, there is close
agreement between the live bent-pipe data and the laboratory
data. Second, the throughput performance of SCPS-TP is almost
flat for bit-error rates better than 10-6 with both 1000-byte and
125-byte segments. The throughput degrades by approximately
10% with 1000-byte segments as the bit-error rate moves from
10-6 to 10-5; however, the performance with 125-byte segments is
reduced only slightly at these bit-error rates. These curves dem-
onstrate SCPS-TP’s robustness in dealing with corruption-
induced loss. Finally, we see that 1000-byte segments consis-
tently out-perform 125-byte segments until the bit-error rate be-

comes worse than 10-5, where smaller segments begin to gain an
advantage because they are less susceptible to bit-errors.

6.3 On-Board SCPS-TP Experiment

In the on-board SCPS-TP experiments, we had the opportunity to
port our prototype to the on-board computer of an orbiting space-
craft and conduct protocol performance measurements. We
hosted our code on a British satellite known as the Science and
Technology Research Vehicle (STRV). The communications
channel bandwidth from the satellite to the ground was 1000 b/s
and the return channel data-rate was 125 b/s, again yielding an
8:1 ratio. The maximum transmit unit of the STRV’s interface
was 90 bytes, making it impossible to experiment with larger
packet sizes. The round-trip propagation delay was about 8 sec-
onds because of clocking delays and delays imposed by various
components of the ground network between the groundstation
and the control center, where the SCPS-TP host was located. We
conducted a number of tests on the STRV to characterize the
performance of the SCPS-TP protocol and to evaluate the per-
formance improvements offered by the various individual SCPS-
TP extensions.

In Figure 8, we show the results of two independent on-board
tests with different protocol configurations. These tests illustrate
the impact of SCPS-TP Header Compression and the SNACK
option. The first configuration includes these two extensions and
the second disables them. The SCPS-TP configuration parame-
ters that are common to the two tests are listed in Table 4. In the
live tests, the spacecraft was the data-sender and the ground-
based host was the receiver. We repeated the on-board experi-
ments on the testbed and we present both live and laboratory
data in Figure 8. The figure plots the SCPS-TP user-data
throughput versus bit-error rate for each protocol configuration.
The lines on the plot represent the lab data for each protocol
configuration and the points are individual runs on the live satel-
lite. As in the bent-pipe test, we see close agreement between
the lab and the live test results. The plot shows, as expected,
that the SCPS-TP Header Compression and SNACK extensions
substantially improve throughput performance when the link
experiences bit-errors. By reducing overhead, header compres-
sion improves throughput at all bit-error rates since the compres-
sion scheme is tolerant of loss. The SNACK option improves
error recovery by informing the sender about the loss of poten-
tially multiple segments without having to wait for three dupli-
cate ACKs or a retransmission timer time-out, as is the case
when SNACK is disabled.

Table 3: SCPS-TP Profile for Bent-Pipe Test.

Configuration Parameter Test Setting
Send buffer size 71,929 bytes
Receive buffer size 69,881 bytes
Congestion control Off
ACK frequency 2 ACKs/RTT
Rate control 256 kb/s
SNACK option On, No bit-vector
Window Scaling option On
TCP Timestamps option On
SCPS-TP Header Compression On

Table 4: SCPS-TP Profile for On-Board Test.

Configuration Parameter Test Setting
Send buffer size (on-board) 19,712 bytes
Receive buffer size (on the ground) 69,880 bytes
Congestion control Off
ACK frequency 1 ACK/RTT
Rate control 1 kb/s
Window Scaling option On
TCP Timestamps option Off

Figure 8: On-Board Test: Throughput vs. BER.

7. Conclusions and Future Work

The space communication environment differs from the terres-
trial (wired) communication environment in ways that signifi-
cantly affect transport protocol performance. While TCP works
well in the terrestrial environment, modification is necessary to
provide good performance in the satellite environment. One of
the primary differences between space communication environ-
ments and current terrestrial environments is in the source of
data loss. Terrestrial networks primarily experience loss caused
by congestion. In contrast, space communication networks ex-
hibit mixed-loss characteristics: losses can result from conges-
tion, corruption, or link outages.

TCP’s assumption that virtually all loss is caused by congestion
results in severe degradation of performance in error-prone envi-
ronments. When losses are not caused by congestion, SCPS-TP’s
throughput remains high by avoiding the congestion-control re-
sponse and by providing enhanced information about data loss
via the SCPS-TP Selective Negative Acknowledgment (SNACK)
option.

Improving performance in mixed-loss networks requires a means
of identifying the source of data loss and mechanisms to respond
appropriately to the different sources of loss. We have identified
three primary sources of loss in space communication networks,
and are examining existing, albeit not currently widely used,
methods for congestion detection and response. We have defined
new methods of signaling corruption and link outage, and have
developed appropriate responses to these sources of loss.

We have also modified TCP’s acknowledgment strategy to ac-
commodate asymmetric channels. SCPS-TP sends ACKs much
less frequently than standard TCP does to improve throughput
when the ACK channel is highly constrained. This modification
has ramifications on TCP’s congestion control and loss detection
mechanisms. We have adopted the TCP Vegas congestion con-
trol mechanisms to help cope with the reduced ACK frequency;
however, additional work is still required in this area. We have
discovered that TCP Vegas congestion control is very sensitive to
changes in the round-trip time. Such changes may be caused by
significant ACK delay or by mobility; however, TCP Vegas will
interpret them as network congestion. We have also found that
our approach of a reduced ACK frequency coupled with TCP
Vegas congestion control requires a substantial amount of tuning.

In contrast, TCP’s congestion control algorithms are quite ele-
gant and robust and they adapt autonomously to changing delays.

In continuing our work with mixed-loss communication environ-
ments, we intend to experiment with Random Early Detection
(RED) gateways [FJ93] using Explicit Congestion Notification,
and to extend the RED gateways to also signal corruption and
link outages, based on link quality information from the link
layer. We plan to enhance our TCP-Vegas congestion control
implementation to provide closed-loop rate control, and to de-
velop adaptive acknowledgment strategies to address the combi-
nation of high error-rates and limited acknowledgment channel
bandwidth. Additionally, we plan to compare the effectiveness
of the SCPS-TP SNACK option to that of the RFC 2018 SACK
option [MMFR96], especially in conjunction with a reduced ac-
knowledgment frequency. We are interested in the prospects of
improving the TCP Vegas congestion control algorithms by infer-
ring which segments have left the network using the SACK, in a
way similar to the Forward Acknowledgment (FACK) algorithm
for TCP proposed in [MM96].

Although we are developing our work specifically for the space
communication environment, we feel that the extensions to TCP
that we are defining will provide similar improvements in TCP
performance when operating over mobile and wireless links. We
intend to evaluate these extensions in the wireless and mobile
environments at a future date.

Acknowledgments

The authors thank the anonymous reviewers for their constructive
comments. Sally Floyd and Adrian Hooke each provided com-
ments that improved the quality of this paper. We also thank the
many individuals that assisted us in configuring and conducting
the live data tests.

References
[Bra89] R. Braden, editor, “Requirements for Internet Hosts

- Communication Layers,” Request for Comments
1122, IETF, October 1989.

[BB94] A. Bakre and B. R. Badrinath, “I-TCP: Indirect
TCP for Mobile Hosts,” Technical Report DCS-TR-
314, Rutgers University, October 1994.

[BSAK95] H. Balakrishnan, S. Seshan, and R. H. Katz,
“Improving Reliable Transport and Handoff Per-
formance in Cellular Wireless Networks,” ACM
Wireless Networks, Vol. 1, No. 4, pp. 469-481, De-
cember 1995.

[BPSK96] H. Balakrishnan, V. N. Padmanabhan, S. Seshan,
and R. H. Katz, “A Comparison of Mechanisms for
Improving TCP Performance over Wireless Links,”
Proceedings of ACM SIGCOMM ‘96, pp. 256-269,
Stanford, CA, August 1996.

[BOP94] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson,
“TCP Vegas: New Techniques for Congestion
Avoidance,” Proceedings of ACM SIGCOMM ‘94,
pp. 24-35, London, U. K., October 1994.

[CI95] R. Caceres and L. Iftode, “Improving the Perform-
ance of Reliable Transport Protocols in Mobile
Computing Environments,” IEEE Journal on Se-

lected Areas in Communications, Vol. 13, No. 5,
pp. 850-857, June 1995.

[DLY95] P. Danzig, Z. Liu, and L. Yan, “An Evaluation of
TCP Vegas by Live Emulation,” Proceedings of
ACM SIGMetrics ‘95, 1995.

[FJ93] S. Floyd and V. Jacobson, “Random Early Detec-
tion Gateways for Congestion Avoidance,”
IEEE/ACM Transactions on Networking, Vol. 1,
No. 4, pp. 397-413, August 1993.

[Flo94] S. Floyd, “TCP and Explicit Congestion Notifica-
tion,” ACM Computer Communications Review,
Vol. 24, No. 5, pp. 8-23, October 1994.

[Fox89] R. Fox, “TCP Big Window and Nak Options,” Re-
quest for Comments 1106, IETF, June 1989.

[Hoe96] J. C. Hoe, “Improving the Start-up Behavior of a
Congestion Control Scheme for TCP”, Proceedings
of ACM SIGCOMM ’96, pp. 270-280, Stanford, CA
August 1996.

[JB88] V. Jacobson and R. Braden, “TCP Extensions for
Long-Delay Paths,” Request for Comments 1072,
IETF, October 1988.

[JBB92] V. Jacobson, R. Braden, and D. Borman, “TCP
Extensions for High Performance,” Request for
Comments 1323, IETF, May 1992.

[Jac88] V. Jacobson, “Congestion Avoidance and Control,”
Proceedings of ACM SIGCOMM ‘88, pp. 314-329,
Stanford, CA, August 1988.

[Jac90] V. Jacobson, “Compressing TCP/IP Headers for
Low-Speed Serial Links,” Request for Comments
1144, IETF, February 1990.

[MM96] M. Mathis, J. Mahdavi, “Forward Acknowledg-
ment: Refining TCP Congestion Control,” Pro-
ceedings of ACM SIGCOMM ‘96, pp. 281-291,
Stanford, CA, August 1996.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“TCP Selective Acknowledgment Options,” Re-
quest for Comments 2018, IETF, October 1996.

[Par94] C. Partridge, Gigabit Networking, Addison-Wesley,
Reading, MA, 1994.

[Pax96] V. Paxson, “End-to-End Routing Behavior in the
Internet,” Proceedings of ACM SIGCOMM ‘96, pp.
25-38, Stanford, CA, August 1996.

[Ste94] W. R. Stevens, TCP/IP Illustrated, Volume 1, Ad-
dison-Wesley, Reading, MA, 1994.

[Ste96] W. R. Stevens, “TCP Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast Recovery Al-
gorithms,” Internet Draft, draft-stevens-tcpca-spec-
01.txt, March 1996.

[VS94] C. Villamizar and C. Song, “High Performance
TCP in ANSNET” ACM Computer Communica-

tions Review, Vol. 24, No. 5, pp. 45-60, October
1994.

